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Abstract Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of
land surface models tasked with characterizing the surface water and energy balance. Temporal variability
in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration
capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture
Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations,
we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank
correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall
accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for
LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling
strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff
generation processes.

Plain Language Summary Hydrologic models attempt to predict the fraction of incoming
rainfall, which is converted into runoff (versus infiltrated into the soil). If accurate, these predictions are
valuable for a wide range of agricultural water use and water management applications. The ability of the
land surface to infiltrate rainfall is largely dependent on the amount of water present in the soil column prior
to the start of a storm event. Using a new satellite-based soil moisture data product, this paper examines
whether existing hydrologic models can accurately reproduce the correct relationship between prestorm soil
moisture and rainfall infiltration. Results indicate that models tend to underestimate the strength of this
relationship and therefore underutilize available soil moisture information for predicting the land surface
response to future rainfall. Results in this paper will eventually be used to correct for this bias and enhance
our ability to predict streamflow extremes associated with floods and droughts.

1. Introduction

A first-order priority for land surface models (LSMs) is accurately capturing the degree to which prestorm soil
moisture levels constrain event runoff coefficients (Koster & Milly, 1997; i.e., the fraction of rainfall accumula-
tion volume converted into stormflow during a storm event). The relationship between prestorm soil moist-
ure and hydrologic basin response has received considerable attention in small-scale field studies (e.g.,
Western & Grayson, 1998) and the development of hydro-geomorphologic models capable of capturing
the coupled relationship between stormflow, erosion, and sediment transport (e.g., Kim et al,, 2016). Such
work has contributed to an improved understanding of the complex role soil moisture plays in various runoff
generation processes (e.g., Mirus & Loague, 2013). Nevertheless, runoff parameterizations in LSMs still do not
reflect best hydrologic process understanding (Clark et al., 2015), and LSMs demonstrate only modest skill in
estimating daily streamflow within medium-scale (10® to 10* km?) hydrologic basins (Xia, Mitchell, et al., 2012).

Satellite-based soil moisture products offer a potentially useful diagnostic for examining the relationship
between mean soil moisture and basin runoff response in LSMs. However, diagnostic efforts involving these
products have been hampered by the low quality of historically available, satellite-based soil moisture pro-
ducts (Crow et al.,, 2017). In this regard, the January 2015 launch of the National Aeronautics and Space
Administration (NASA) Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010) affords a new
opportunity to examine the relationship between prestorm soil moisture and event runoff coefficients
in LSMs. The SMAP mission produces a Level-4 Surface and Root-zone Soil Moisture (SMAP_L4) product
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Figure 1. Locations of the 16 study basins within the south-central United States. Color shading represents a (county-scale)
map of the total number of flash-flood events observed between January 2015 and November 2016 (National Weather
Service, 2007). Basin numbers refer to the listing order in Table 1. The circles indicate basin outlets and USGS stream
gauge locations.

based on the assimilation of SMAP brightness temperature observations into an LSM (Reichle et al., 2016,
2017). Crow et al. (2017) demonstrates that the improved accuracy, complete spatio-temporal coverage,
and subdaily frequency of the SMAP_L4 product make it uniquely suited for characterizing the relationship
between prestorm soil moisture and storm-scale runoff response.

Given that past studies have already focused on comparing streamflow estimates from multiple LSMs to
stream gauge observations (see, e.g., Xia, Mitchell, et al.,, 2012), our emphasis here is on using SMAP_L4
soil moisture estimates (in concert with streamflow and precipitation accumulation observations) to verify
the statistical strength of internal LSM coupling between prestorm soil moisture and event
runoff coefficients.

2. Basins and Data Sets

Our geographic domain consists of 16 medium-scale basins located in the south-central United States (see
Figure 1 and Table 1). Due to their limited topographic complexity, relatively low levels of forest cover, and
low frequency of snow cover, these basins are well suited to satellite retrieval of surface soil moisture. In addi-
tion, the region has experienced an extraordinarily large number of extreme precipitation events during the
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Table 1
Attributes of Basins in Figure 1
Basin number USGS station no. USGS station name Basin size (kmz) Annual P (mm) Runoff ratio Q/P
1 07144780 Ninnescah River AB Cheney Re, KS 2,049 768 0.08
2 07144200 Arkansas River at Valley Center, KS 3,402 842 0.11
3 07152000 Chikaskia River near Blackwell, OK 4,891 896 0.19
4 07243500 Deep Fork near Beggs, OK 5,210 945 0.15
5 07147800 Walnut River at Winfield, KS 4,855 980 0.31
6 07177500 Bird Creek Near Sperry, OK 2,360 1,025 0.23
7 06908000 Blackwater River at Blue Lick, MO 2,924 1,140 0.29
8 07196500 lllinois River near Tahlequah, OK 2,492 1,175 0.29
9 07019000 Meramec River near Eureka, MO 9,766 1,187 0.28
10 07052500 James River at Galena, MO 2,568 1,255 0.31
1 07186000 Spring River near Wace, MO 2,980 1,258 0.27
12 07056000 Buffalo River near St. Joe, AR 2,148 1,238 0.37
13 06933500 Gasconade River at Jerome, MO 7,356 1,293 0.24
14 07067000 Current River at Van Buren, MO 4,351 1,309 0.31
15 07068000 Current River at Doniphan, MO 5,323 1,314 0.36
16 07290000 Big Black River NR Bovina, MS 7,227 1,368 037

past few years (Figure 1) and therefore provides an unusually large sample of significant storm events during
the SMAP data period. Specific basins are selected based on a screening analysis performed by the Model
Parameterization Experiment (Duan et al., 2006), which eliminates those lacking adequate rain gauge
density or containing significant anthropogenic modification to their river flow system. Both mean annual
precipitation and mean annual runoff efficiency (i.e, mean annual streamflow divided by mean annual
precipitation) increase when moving from west to east across the region (Table 1). Rangeland, grassland,
and winter wheat land cover are common in basins #1-#7. Higher-numbered basins toward the east (i.e.,
basins #8-#16) contain relatively more vegetation biomass including significant amounts of upland forest
cover and summer agriculture in low-lying areas.

2.1. Daily Streamflow and Rainfall Observations

Daily (0 to 24 UTC) basin-averaged rainfall accumulations for each basin in Figure 1 are estimated from the
spatial and temporal aggregation of hourly, 0.125° rainfall accumulation estimates produced by phase 2 of
the North American Land Data Assimilation System (NLDAS-2). These estimates are, in turn, based on the
merger of hourly rainfall radar data with a daily rain gauge analysis (Cosgrove et al., 2003). Daily (0 to 24
LST, UTC-6 hr) streamflow values are obtained from U.S. Geological Survey (USGS) stream gauge stations
(U.S. Geological Survey, 2016) located at each basin outlet (Figure 1). The 6-hr offset between daily averages
of precipitation and streamflow is meant to approximate the natural traveltime lag between precipitation
and the subsequent streamflow response at basin outlets. The impact of this simplified routing representa-
tion is discussed in the supporting information.

Daily total streamflow observations (L3/T) are divided by basin area to produce daily flux (L/T) estimates. The
fast stormflow runoff component of the total streamflow time series was isolated using the USGS HYdrograph
SEparation Program (HYSEP; Sloto & Crouse, 1996).

2.2. SMAP L4 Surface and Root-Zone Soil Moisture Estimates

The SMAP_L4 product is generated using an ensemble-based data assimilation system that integrates SMAP
brightness temperature data into the NASA Goddard Earth Observing System (GEOS) Catchment LSM (CLSM;
Koster et al., 2000). Surface meteorological forcing data for CLSM are derived from the GEOS atmospheric
assimilation system with a correction for precipitation accumulation derived from rain gauge observations
(Reichle et al., 2017). The assimilation system interpolates and extrapolates information from the SMAP
brightness temperature observations in time and in space based on the relative uncertainties of the model
estimates and the observations to produce a 3-hourly surface (0-5 cm) and root-zone (0-100 cm) volumetric
soil moisture analysis on the 9-km EASEv2 grid (Reichle et al,, 2016, 2017). The CLSM component of the
SMAP_L4 system was initialized on 1 January 2014 using model states derived by looping twice through
2000-2013 forcing data. Here SMAP_L4 (version Vv2030) 3-hourly, 9-km resolution estimates are averaged

CROW ET AL.

4871



nnnnnnnnnnnnnn
'AND SPACE SCiENCE

Geophysical Research Letters 10.1029/2018GL077193

in both space and time to produce a single daily-averaged (0 to 24 UTC) soil moisture analysis for each basin.
The SMAP_L4 product is wholly independent of USGS streamflow observations (used here as a point of com-
parison) and provides a better representation of prestorm soil moisture conditions than SMAP Level-3 soil
moisture retrieval products (Crow et al., 2017). The SMAP_L4 system also produces runoff estimates; however,
these estimates are not considered here. See the supporting information for additional discussion of the
implications associated with our use of a soil moisture analysis rather than a direct remote sensing retrieval.

2.3. Land Surface Models

The NLDAS-2 project generates continuous, hourly, 0.125° output from four different LSMs: the Mosaic
model (Koster & Suarez, 1994, 1996), version 2.8 of the Noah model (Xia et al., 2012d); the Sacramento
(SAC) model (Koren et al., 2000, 2003); and version 4.0.3 of the Variable Infiltration Capacity (VIC) model
(Liang et al.,, 1994, 1996). Mosaic and Noah were developed for atmospheric general circulation models
and emphasize water and energy interactions between the land surface and atmosphere (Ek et al.,
2003; Koster & Suarez, 1996). In contrast, SAC and VIC were developed as off-line (land-only) hydrological
models with a focus on streamflow prediction (Burnash, 1995; Liang et al., 1994). All four models are
driven using NLDAS-2 forcing data and parameterizations previously described in Xia et al. (2012d) and
run continuously from a January 1979 initialization based on climatological state values. In addition to
these four NLDAS-2 LSMs, we also assess output from an open loop (i.e., no data assimilation) simulation
with CLSM using surface meteorological forcing and a spin-up identical to that of the SMAP_L4 system
(see section 2.2; Reichle et al.,, 2017).

The representation of stormflow runoff processes in each LSM varies significantly. Noah v2.8 utilizes an
infiltration-excess representation based on an adaptation of the Soil Conservation Service Curve Number
approach (Schaake et al., 1996). In contrast, CLSM utilizes a saturation-excess runoff parameterization which
considers the fraction of the land surface saturated from below by a dynamic water table. VIC and Mosaic use
a similar approach, except that subgrid saturation fractions are based on the grid-scale mean soil moisture
values (as opposed to an explicitly calculated water table depth as in CLSM). In addition, Mosaic utilizes a sim-
ple linear model for the relationship between soil moisture and saturated fraction (Koster & Suarez, 1996),
while VIC employs a nonlinear variable infiltration curve (Liang et al., 1994). The SAC model calculates both
the free and tension soil water state. Tension water is used to calculate so-called “direct runoff,” while “surface
runoff” and “subsurface interflow” are based on free water calculations (Koren et al., 2000, 2003). Note that
the term “stormflow” is used here to refer to surface runoff results obtained from Noah, VIC, CLSM, and
Mosaic as well as the sum of the SAC “surface,” “direct,” and “subsurface interflow” runoff components.

For each model, daily-averaged (0 to 24 UTC) top-layer volumetric soil moisture (0-5 cm for CLSM, and
0-10 cm otherwise), root-zone volumetric soil moisture (generally 0-100 cm), stormflow, and baseflow esti-
mates are extracted and spatially averaged within each basin. The conversion between SAC free/tension soil
water estimates and multilayer, volumetric soil moisture products is described in Xia et al. (2014). Note that
there is some variation, both within and between LSMs, with regard to the defined depth of root-zone soil
moisture estimates. For example, Noah uses a 1-m depth for grasslands and shrubs and a 2-m depth for for-
ests. Mosaic uses a 40-cm depth for all vegetation. VIC and SAC use a 1-m depth as a default but also apply a
shallower rooting depth for certain land cover types.

3. Approach

3.1. Storm Event Definition and Rank Correlation Metric

Our analysis is based on the separation of the daily time series into discrete 6-day storm event periods. The
first day of each event period contains a daily precipitation amount that exceeds a preset accumulation
threshold level. To avoid the confounding impact of multiple events within a single storm event period,
we discard any 6-day period containing two or more days exceeding this threshold. New storm event periods
must also be preceded by at least a single day with a daily precipitation amount below this threshold. To
mask snow-dominated events, the first day of any event period must have a daily mean air temperature
greater than 2° (C) (based on NDLAS-2 air temperature estimates). The observed event runoff coefficient is
the ratio of accumulated streamflow to accumulated rainfall after both have been temporally summed over
a given storm event period. All daily soil moisture products are 0 to 24 UTC averages. Prestorm antecedent
soil moisture is defined as the minimum daily soil moisture for the two-day interval preceding a storm
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event. Since all basins are small enough such that their (HYSEP-predicted) basin saturation times (i.e., the
interval of time after a storm event at which stormflow is no longer observed at the basin outlet) are less than
our 6-day storm event period, no routing is applied to LSM-derived runoff values.

Following Crow et al. (2005, 2017), the Spearman rank correlation (R) between antecedent soil moisture
and the event runoff coefficient is sampled across all available storm event periods within each basin
between 31 March 2015 and 31 May 2017. Rank correlation is applied to minimize the confounding effect
of potential nonlinearity in the relationship between antecedent soil moisture and event runoff coeffi-
cient. Due to the relatively short SMAP data record, which precludes the sampling of accurate R for
any single basin, results presented here are based on the spatial average of R values sampled across
all 16 basins (R). Sensitivity analyses summarized in Crow et al. (2017) demonstrate that R is relatively
insensitive to the details of our storm-event identification approach (e.g., the use of a 6-day storm event
period to define storm lengths and a 2-day interval to define prestorm soil moisture).

Our analysis is based on comparing R values obtained from internal LSM estimates of soil moisture, runoff,

and LSM precipitation forcing (Rism ; based on the five different LSMs introduced in section 2.3) to values
computed from the SMAP_L4 soil moisture analysis and external observations of USGS streamflow and
NLDAS-2 precipitation (Rops). Note that SMAP_L4 soil moisture does not utilize NLDAS-2 rainfall forcing
and is independent of USGS streamflow observations. In addition, we never use SMAP_L4 runoff estimates.
Therefore, the critical distinction between R sy and Rops is that Risy reflects only internal LSM model phy-
sics, while Rops provides an objective point of reference based on mutually independent soil moisture esti-
mates and observed event runoff coefficients. This distinction has consequences for the impact of random

error. The computation of Risy relies on internal model-based estimates of soil moisture and runoff that
are derived from the LSM precipitation forcing. Therefore, model estimates are never confronted with
independent external streamflow information. This ensures that R.sy is insensitive to random errors in
the LSM precipitation. In contrast, the presence of independent random errors (in either SMAP_L4 soil
moisture, NLDAS-2 rainfall, or USGS streamflow) will tend to bias Rops low (Findell et al., 2015). See the sup-
porting information for additional discussion regarding the interpretation of Rism and Rops.

3.2. Uncertainty Description

Sampling error bars for R in individual basins are estimated using a 5,000-member boot-strapping approach
(where individual storm events are randomly sampled with replacement to preserve the underlying storm
event sample size) and then combined to estimate uncertainty in R. Based on the auto-correlation analysis
in Crow et al. (2017), the 16 basins in Figure 1 are assumed to contain 7.4 spatially independent samples.
This adjusted sample size is used to calculate the expected reduction in sampling uncertainty associated with
averaging across all basins.

4, Results

For all five LSMs (VIC, Noah, Mosaic, SAC, and CLSM), the left-hand side of Figure 2 plots Risy values sampled
between 31 March 2015 and 31 May 2017 for the 16 basins in Figure 1. The right-hand side of Figure 2 shows
analogous Rqps Vvalues obtained from SMAP L4 soil moisture, USGS streamflow, and NLDAS-2 precipitation
observations. Results are shown for the cases of utilizing both surface and root-zone soil moisture to repre-
sent prestorm soil moisture and a storm precipitation intensity threshold of 25 mm/day (which yields 333
individual storms events across all basins during the study period).

Figure 2a shows results for total streamflow (i.e., stormflow plus baseflow). As expected, Rops Vvalues are sig-
nificantly positive (~0.8 [—] for both root-zone and surface-zone soil moisture from SMAP_L4) and reflect a
tendency for higher antecedent soil moisture to be associated with larger event runoff coefficients (and vice

versa). For the surface soil moisture case, Rops Values are higher than corresponding Rism sampled from
internal LSM predictions. However, these differences are significant (with 95% confidence) only for VIC and
generally insignificant when using root-zone soil moisture to characterize prestorm conditions. The sharp
increase in VIC and Noah Risw for the root-zone soil moisture case (versus the surface-zone case) in
Figure 2a is likely due to the dominance of baseflow as a runoff generation process in VIC and Noah (see rela-
tive stormflow percentages for LSMs in Figure 2b) and the close functional relationship between root-zone
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Figure 2. Values of R (with 95% confidence intervals) sampled using both (a) total streamflow (i.e., stormflow + baseflow)
and (b) stormflow only. The left-hand side of the figure shows internal Risw predictions, while the right-hand side
shows Rops sampled from independent SMAP_L4 soil moisture, USGS streamflow, and NLDAS-2 rainfall observations.
The colors/symbols indicate the use of either surface-zone (SFSM) or root-zone (RZSM) soil moisture. Numerical labels
in part (b) relate the percentage of total streamflow attributed to stormflow. All results are based on a triggering
rainfall intensity of 25 mm/day.

soil moisture and baseflow. For VIC, it may also reflect known issues with the estimation of surface-zone soil
moisture (Xia et al.,, 2014, 2015).

Since our focus here is on the storm event runoff response, it is useful to filter out the impact of baseflow
and isolate stormflow runoff. After removing the effects of baseflow (see section 2), the depth of antece-
dent soil moisture has only a small impact on all coupling results in Figure 2b—suggesting that antecedent
surface and root-zone soil moisture estimates are equally valuable for forecasting storm-scale runoff
response. More importantly, the strength of the soil moisture/stormflow coupling captured by independent
estimates (Rops) falls along the upper edge of the range provided by internal LSM predictions (Risw ).
Differences between LSMs also emerge. For example, stormflow-based Rops results in Figure 2b are signif-
icantly higher (with 95% confidence) than comparable internal Rsy estimates from Noah and Mosaic.
Likewise, stormflow-based Rqps is larger than Ry from VIC (although not by a statistically significant
amount). As discussed in the supporting information, there are credible reasons to suspect that Ryps values
in Figure 2b slightly underestimate the true strength of coupling between soil moisture and event runoff
coefficients. Therefore, if anything, Figure 2 underestimates the magnitude of undercoupling in VIC
and Noah. In contrast, the higher Risw levels predicted by SAC and CLSM are generally consistent with
the Rops values (Figure 2b). See section 5 below for a process-level discussion of these LSM differences.

In addition to prestorm soil moisture, event runoff coefficients are expected to vary as a function of storm
intensity. Figure 3 plots R-values (based on stormflow-only and root-zone soil moisture) that are subset by
low (5 to 15 mm/day) and high (> 25 mm/day) storm intensity based on the observed daily rainfall
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Figure 3. As in Figure 2 except that the colors/symbols indicate the sampling of storm events with either low (5-15 mm/
day) or high (>25 mm/day) triggering rainfall intensities. All results are based on the use of root-zone soil moisture and
limited to the stormflow component of total streamflow. Note that high-intensity (>25 mm/day) results are identical to
“root-zone soil moisture” results shown in Figure 2b.

accumulation on the first (triggering) day of each storm. Surprisingly, Rops is marginally larger for the high-
intensity events than for the low-intensity ones. This is at odds with (more intuitive) Noah and CLSM LSM
results in which larger events demonstrate less sensitivity to prestorm soil moisture conditions.

5. Discussion

It is difficult to provide a comprehensive discussion of the model-to-model variations found in Figures 2
and 3. Nevertheless, a useful contrast can be drawn between LSMs with the highest (CLSM) and lowest
(Noah) soil moisture/stormflow coupling strengths in Figure 2b. As discussed in section 2.3, these two
LSMs apply contrasting approaches to the modeling of the stormflow runoff response. The response in
Noah v2.8 is based on an infiltration-excess representation whereby the fractional conversion of rainfall into
stormflow is driven primarily by variations in rainfall intensity (Schaake et al., 1996). In contrast, CLSM gener-
ates surface runoff via a saturation excess process whereby stormflow is generated by rainfall incident upon
portions of the landscape that have been saturated from below by a rising water table (Koster et al., 2000). In
the case of CLSM, the efficiency of stormflow generation is tied directly to the saturated land fraction of the
basin, which, in turn, is tightly linked with basin-averaged surface soil moisture. Figure 2b implies that this
type of direct functional relationship between surface soil moisture and stormflow generation is necessary
for LSMs to demonstrate sufficient internal coupling to match the levels of coupling obtained from SMAP
L4 soil moisture, independent USGS streamflow observations, and NLDAS-2 precipitation. A second notable
signature is the tendency for the observed coupling to increase as a function of storm intensity (Figure 3). This
too is at odds with the theory of infiltration-excess runoff where the relative impact of prestorm soil moisture
is predicted to decrease for high-intensity storm events (Schaake et al., 1996). However, the observed trend of
rainfall intensity on coupling is not statistically significant (see Figure 3) and potentially impacted by our
inability to adequately sample across a wider range of storm intensities.

The parameterization of single stormflow process is also potentially important. For example, the Noah
infiltration-excess representation is based on a modification to a curve number approach (Schaake et al.,
1996) that can be calibrated to lend varying amounts of weight to prestorm soil moisture conditions
(Massari et al., 2014). Such parameter modifications could, in principle, correct for the significant undercou-
pling observed in Figure 2b. Nevertheless, if infiltration-excess runoff approaches are applied in this
region, they should, at a minimum, be recalibrated to substantially increase the importance of prestorm
soil moisture.

Among the other LSMs, the 95% confidence intervals for VIC and SAC internal coupling results in Figures 2
and 3 generally overlap those obtained from SMAP_L4 and USGS observations. The single exception being
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the significantly low coupling observed between VIC surface soil moisture and event runoff coefficients for
total runoff results in Figure 2a. On the other hand, Mosaic results generally fall between those of Noah
and VIC. The overall trend of low coupling in Noah and Mosaic versus higher coupling in SAC, CLSM, and
VIC is consistent with variations in model complexity (with Noah and Mosaic utilizing notably simpler
approaches for stormflow generation; see section 2.3) and is potentially reflective of the origins of SAC and
VIC as hydrologic models with a more extensive history of calibration against observed streamflow (Xia, Ek,
et al,, 2012). This assessment is also consistent with Xia, Mitchell, et al. (2012), who examined the accuracy
of LSM runoff prediction versus daily streamflow observations from the NLDAS-2 LSMs and found generally
superior results for VIC and SAC relative to Noah and Mosaic.

6. Summary and Conclusions

Accurately representing the relationship between prestorm soil moisture and subsequent event runoff coef-
ficients is a fundamental requirement of any LSM (Koster & Milly, 1997) and necessary for the successful appli-
cation of LSMs to hydrologic forecasting. Utilizing a metric developed by Crow et al. (2005, 2017), we
demonstrate that within the study domain illustrated in Figure 1, soil moisture/stormflow coupling strength
estimates provided by observations (i.e., SMAP_L4 soil moisture, USGS streamflow, and NLDAS-2 radar/gauge
precipitation) is at the top of the intermodel range obtained from various LSMs. An apparent low bias in LSM-
based coupling estimates is particularly evident for LSMs (e.g., Noah v2.8) that utilize an infiltration-excess
conceptualization of stormflow (Figure 2b). Noah v2.8 also fails to match the observed variation of soil
moisture/stormflow coupling with storm intensity (Figure 3). Analogous, although less severe, problems
are noted for the simplified stormflow approach applied in Mosaic (Figure 2b). The implication is that these
LSMs tend to squander a source of hydrologic predictability by underutilizing their internal soil moisture esti-
mates for forecasting variations in runoff coefficients during intense storm events. A precise diagnosis of pro-
cesses (and/or parameterizations) responsible for this undercoupling will require a more incremental
approach for generating LSM model variations. Modular LSMs, such as the Noah Multi-parameterization
LSM (Noah-MP; Niu et al., 2011), are particularly well suited for this purpose.

Likewise, several important caveats need to be considered. First, while LSM coupling strengths are insensitive
to random errors in LSM forcing data, systematic forcing error may still have an impact. For example, coarse
spatial resolution rainfall data induce a conditional bias whereby extreme rainfall rates are systematically
underestimated. Since LSM runoff predictions may respond in a nonlinear manner to changes in rainfall
intensity, such a conditional bias could conceivably induce systematic changes in internal LSM coupling.
Therefore, our results are potentially sensitive to the spatial resolution of the rainfall forcing data used to force
the LSM simulations. Second, significant bias in internal LSM results emerges only after baseflow has been
separated out of both the modeled and observed streamflow time series (compare Figures 2a and 2b).
Due to uncertainty in baseflow separation approaches for observed streamflow, and variations in the defini-
tion of runoff components acquired from different LSMs, there is inherent ambiguity in the cross comparison
of stormflow estimates obtained from different sources. Finally, given that the relative importance of various
runoff generation processes is known to vary substantially across different climates and land cover types, a
wider geographic focus is required before more general conclusions can be drawn.
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